Remediation for Heavy Metal Contamination 289

Chen, K., X. Wang, P. Xia and J. Xie. 2020. Efficient removal of tetrabromodiphenyl ether with a Z-scheme Cu2O

(rGOTiO2) photocatalyst under sunlight irradiation. Chemosphere. 254: 126806.

Corsi, I., M. Winther-Nielsen, R. Sethi, C. Punta, C. Della Torre, G. Libralato, G. Lofrano, L. Sabatini, M. Aiello,

L. Fiordi and F. Cinuzzi. 2018. Ecofriendly nanotechnologies and nanomaterials for environmental applications:

key issue and consensus recommendations for sustainable and ecosafenanoremediation. Ecotoxicol. Environ.

Saf. 154: 237–244.

Czech, B, P. Zygmunt, Z. C. Kadirova, K. Yubuta and M. Hojamberdiev. 2020. Effective photocatalytic removal of

selected pharmaceuticals and personal care products by Elsmoreite/Tungsten Oxide@Zns Photocatalyst. J.

Environ. Manag. 270: 110870.

Danish, M. S. S., L. L. Estrella, I. M. A. Alemaida, A. Lisin, N. Moiseev, M. Ahmadi, M. Nazari, M. Wali,

H. Zaheb and T. Senjyu. 2021. Photocatalytic applications of metal oxides for sustainable environmental

remediation. Metals. 11(1): 80.

Darbha, G. K., A. Ray and P. C. Ray. 2007. Gold nanoparticle-based miniaturized nanomaterial surface energy transfer

probe for rapid and ultrasensitive detection of mercury in soil, water, and fish. Acs Nano. 31(3): 208–14.

Dehghani, M. H., M. M. Taher, A. K. Bajpai, B. Heibati, I. Tyagi, M. Asif, S. Agarwal and V. K. Gupta. 2015. Removal

of noxious Cr (VI) ions using single-walled carbon nanotubes and multi-walled carbon nanotubes. Chem. Eng.

J. 279: 344–352.

Fajardo, C., S. Sánchez-Fortún, G. Costa, M. Nande, P. Botías, J. García-Cantalejo, G. Mengs and M. Martín. 2020.

Evaluation of nanoremediation strategy in a Pb, Zn and Cd contaminated soil. Sci. Total Environ. 706: 136041.

Feng, L., M. Cao, X. Ma, Y. Zhu and C. Hu. 2012. Superparamagnetic high-surface-area Fe3O4 nanoparticles as

adsorbents for arsenic removal. J. Hazard. Mater. 217: 439–446.

Ge, Y., Z. Li , D. Xiao, P. Xiong and N. Ye. 2014. Sulfonated multi-walled carbon nanotubes for the removal of copper

(II) from aqueous solutions. J. Ind. Eng. Chem. 20(4): 1765–71.

Gich, M., C. Fernández-Sánchez, L. C. Cotet, P. Niu and A. Roig. 2013. Facile synthesis of porous bismuth–carbon

nanocomposites for the sensitive detection of heavy metals. J. Mater. Chem. A 1(37): 11410–8.

Gupta, R. K. 2017. Oil/water separation techniques: a review of recent progresses and future directions. J. Mater.

Chem. A. 5(31): 16025–16058.

Gusain, R., K. Gupta, P. Joshi and O. P. Khatri. 2019. Adsorptive removal and photocatalytic degradation of organic

pollutants using metal oxides and their composites: a comprehensive review. Adv. Colloid Interface Sci. 272:

102009.

Han, D., S. Y. Lim, B. J. Kim, L. Piao and T. D. Chung. 2010. Mercury (II) detection by SERS based on a single gold

microshell. Chem. Commun. 46(30): 5587–5589.

Hitam, C. N. C., A. A. Jalil, S. Triwahyono, A. F. A. Rahman, N. S. Hassan, N. F. Khusnun, S. F. Jamian, C. R.

Mamat, W. Nabgan and A. Ahmad. 2018. Effect of carbon-interaction on structure-photoactivity of Cu doped

amorphous TiO2 catalysts for visible-light- oriented oxidative desulphurization of dibenzothiophene. Fuel.

216: 407–417.

Kaushal, A. and S. K. Singh. 2017. Removal of heavy metals by nanoadsorbents: a review. J. Environ. Biotechnol.

Res. 6(1): 96–104.

Khanam, R., A. Kumar, A. K. Nayak, M. Shahid, R. Tripathi, S. Vijayakumar, D. Bhaduri, U. Kumar, S. Mohanty,

P. Panneerselvam and D. Chatterjee. 2020. Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: bioavailability

and potential risk to human health. Sci. Total Environ. 699: 134330.

Kim, T. H., J. Lee and S. Hong. 2009. Highly selective environmental nanosensors based on anomalous response of

carbon nanotube conductance to mercury ions. J. Phys. Chem. C. 113(45): 19393–19396.

Kimmel, D. W., G. LeBlanc, M. E. Meschievitz and D. E. Cliffel. 2012. Electrochemical sensors and biosensors.

Anal. Chem. 84(2): 685–707.

Kocabas-Atakli, Z. Ö. and Y. Yürüm. 2013. Synthesis and characterization of anatase nanoadsorbent and application

in removal of lead, copper and arsenic from water. Chem. Eng. J. 225: 625–635. http://dx.doi.org/10.1016/j.

cej.2013.03.106.

Konate, A., X. He, Z. Zhang, Y. Ma, P. Zhang, G. M. Alugongo and Y. Rui. 2017. Magnetic (Fe3O4) nanoparticles

reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustain. 9: 790.

Kumar, V. and P. Guleria. 2020. Application of DNA-Nanosensor for environmental monitoring: recent advances and

perspectives. Curr. Pollut. Rep. 12: 1–21.

Li, F., J. Wang, Y. Lai, C. Wu, S. Sun, Y. He and H. Ma. 2013a. Ultrasensitive and selective detection of copper (II) and

mercury (II) ions by dye-coded silver nanoparticle-based SERS probes. Biosens. Bioelectron. 39(1): 82–87.

Li, M., S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma and N. Wu. 2012. Shape-dependent surface-

enhanced Raman scattering in gold–Raman-probe–silica sandwiched nanoparticles for biocompatible

applications. Nanotechnol. 23(11): 115501.